A battery with emf \(\varepsilon \) and no internal resistance supplies current to the circuit shown in Figure P27.9. When the double-throw switch S is open as shown in the figure, the current in the battery is I0 . When the switch is closed in position a, the current in the battery is Ia . When the switch is closed in position b, the current in the battery is Ib . Find the resistances (a) R1 , (b) R2 , and (c) R3 .

Diagram

Solution

Case 1: When Disconnected

Diagram

\[ \hspace{1pt} - \mathcal{E} + I_0 R_1 + I_0 R_2 + I_0 R_3 = 0 \]

\[ \Rightarrow - \mathcal{E} + I_0 (R_1 + R_2 + R_3) = 0 \tag{1} \]


Case 2: Connected at Point a

Diagram

From node analysis:

\[ I_a - I_1 - I_2 = 0 \]

Loop 1:

\[ \hspace{1pt} - \mathcal{E} + R_1 I_a + R_2 I_2 + R_3 I_a = 0 \]

\[ \hspace{1pt} - \mathcal{E} + R_2 I_2 + (R_1 + R_3) I_a = 0 \tag{A} \]

Loop 2:

From the right-hand vertical branch:

\[ R_2 I_2 = R_2 I_1 \quad \Rightarrow \quad I_2 = I_1 \]

Substitute into node equation:

\[ I_a = 2 I_1 = 2 I_2 \]

Substitute into (A):

\[ \hspace{1pt} - \mathcal{E} + R_2 \cdot \frac{I_a}{2} + (R_1 + R_3) I_a = 0 \]

\[ \hspace{1pt} - \mathcal{E} + I_a \left( \frac{R_2}{2} + R_1 + R_3 \right) = 0 \tag{2} \]


Case 3: Connected at Point b

Diagram

From the loop:

\[ \hspace{1pt} - \mathcal{E} + I_b (R_1 + R_2) = 0 \tag{3} \]

For the shorted R₃ branch: \( I_5 R_3 = 0 \), so \( I_5 = 0 \), it doesn’t affect the rest of the circuit.


From equation (2):

\[ \hspace{1pt} -\mathcal{E} + I_a \left( \frac{R_2}{2} + R_1 + R_3 \right) = 0 \]

Solve for ( R_3 ):

\[ \hspace{1pt} -I_a R_3 = -\mathcal{E} + I_a \left( \frac{R_2}{2} + R_1 \right) \]

\[ \Rightarrow R_3 = \frac{\mathcal{E}}{I_a} - \frac{R_2}{2} - R_1 \]

Substitute into equation (1):

\[ \hspace{1pt} -\mathcal{E} + I_0 \left( R_1 + R_2 + \left( \frac{\mathcal{E}}{I_a} - \frac{R_2}{2} - R_1 \right) \right) = 0 \]

\[ \hspace{1pt} - \mathcal{E} + I_0 \left( \frac{R_2}{2} + \frac{\mathcal{E}}{I_a} \right) = 0 \]

\[ \hspace{1pt} - \mathcal{E} \left( 1 - \frac{I_0}{I_a} \right) + \frac{R_2}{2} I_0 = 0 \tag{★} \]

From (3):

\[ \Rightarrow R_2 = \frac{\mathcal{E}}{I_b} - R_1 \]

Replacing in ★:

\[ \hspace{1pt} - \mathcal{E} \left( 1 - \frac{I_0}{I_a} \right) + \frac{I_0}{2} \left( \frac{\mathcal{E}}{I_b} - R_1 \right) = 0 \]

Solving for (R_1) yields:

\[ \boxed{ R_1 = \mathcal{E} \left( -\frac{2}{I_0} + \frac{2}{I_a} + \frac{1}{I_b} \right) } \]

Substitute into ( R_2 ):

\[ R_2 = \frac{\mathcal{E}}{I_b} - \mathcal{E} \left( -\frac{2}{I_0} + \frac{2}{I_a} + \frac{1}{I_b} \right) \]

\[ R_2 = \mathcal{E} \left( \frac{1}{I_b} + \frac{2}{I_0} - \frac{2}{I_a} - \frac{1}{I_b} \right) \]

\[ \Rightarrow R_2 = 2\mathcal{E} \left( \frac{1}{I_0} - \frac{1}{I_a} \right) \]

\[ \boxed{ R_2 = 2\mathcal{E} \left( \frac{1}{I_0} - \frac{1}{I_a} \right) } \]


Finally, Solve for ( R_3 )

\[ R_3 = \frac{\mathcal{E}}{I_a} - \frac{R_2}{2} - R_1 \]

Substitute the expressions for ( R_2 ) and ( R_1 ):

\[ R_3 = \frac{\mathcal{E}}{I_a} - \mathcal{E} \left( \frac{1}{I_0} - \frac{1}{I_a} \right) - \mathcal{E} \left( -\frac{2}{I_0} + \frac{2}{I_a} + \frac{1}{I_b} \right) \]

Simplify:

\[ R_3 = \mathcal{E} \left( \frac{1}{I_a} - \frac{1}{I_0} + \frac{1}{I_a} + \frac{2}{I_0} - \frac{2}{I_a} - \frac{1}{I_b} \right) \]

\[ \Rightarrow \boxed{ R_3 = \mathcal{E} \left( \frac{1}{I_0} - \frac{1}{I_b} \right) } \]